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It is well known that the equations of gasdynamics and magnetohydro- 
dynamics admit discontinuous solutions if the coefficients of viscosity 
and thermal conductivity are assumed to be zero (?J = 0, X = 0), and the 
electrical conductivity is assumed to be infinitely large (o = ml. The 
discontinuities in these solutions satisfy definite algebraio relations. 

On the other hand, for more exactly formulated equations, the dlscon- 
tinuous solutions are replaced by continuous ones. If such a continuous 
solution tends to a discontinuous one as 9 + 0, x+ 0 and CT -+ 00, then it 
is called a shock wave. For sufficiently small values of q, x, and c-l, 
the shock wave may be replaced by a jump discontinuity. However, not 
every jump discontinuity satisfying the indicated algebraic relations is 
necessarily the limit of a shock wave. Therefore, neglecting the dissi- 
pative coefficients ‘I, x, and o- ‘, we shall consider only those discon- 
tinuous solutions which are the limits of continuous solutions. The 
jumps in such discontinuous solutions will be termed admissible, 

In order to distinguish admissible jumps from inadmissible ones, two 
methods exist at the present time. In the first method, the admissibility 
of a given jump is established after proving the existence of the corre- 
sponding shock wave Kl.2 I, or even after calculating the shock wave 
[ 3-6 1, The second method [ 7-11 1 is based on the fact that certain jump 
discontinuities, when subjected to infinitesimal disturbances, split 
into several propagating jump discontinuities. Such (non-evolutionary) 
jumps, which are unstable with respect to splitting, will be considered 
inadmissible. All other jumps will be assumed admissible*. From the 

* Let Vy < Vz d.. . < Vrbe the phase velocities of small disturbances 
In the region left of the shock front, and VT G V: ( . . . Q Vz be the 
same quantities to the right. Let n_(n+) denote the number of phase 
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actual solutions 
shown that these 
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of some problems (cf., for example, [ 12-16 3 ), it is 
remaining jumps are sufficient for the Cauchs problem 

to possess a unique solution. 

So far, there exists only fragmentary evidence that the two points of 
view indicated above must yield the same result [ 1,2 1 . 

In the present paper, this question is considered in connection with 
the so-called dissipative system of equations, of which the ordinary and 
magnetohydrodynaeic equations are special cases. It will be shown that 
the condition of stability (with respect to splitting) is a necessary 
condition in order that the jusp correspond to a unique shock wave twith- 
in translation). 

We shall also clarify in which cases the profile of the shock wave 
contains jumps. This phenomenon was discovered by Marshall [4 1 and was 
studied in Whitham’s paper [ 5 1 , with which the present work has many 
points in agreement. 

1. Dissipative systems. Let us consider the system of quasi- 
linear equations of the form 

2 + $Aj (24) = CJj$j (U) (i = 1, . . ., a) (1.1) 

where Aj(u) z Ai(ul, zz2, . . ., 
of the same arguments; 

a,,) and $j(a) are differentiable functions 
moreover, Jij(u) E 0 for j 4 m (m < rd. 

'Ihe equality u = Lp (u” being a constant vector) defines a constant 
and uniform solution of system (1.1) if ~j(u”) = 0 (j = m + 1, . . . , rd. 
'Ihe set of all such vectors u” will be denoted by M. 

Starting from the system (l.l), let us consider the system obtained 

from (1.1) by linearizing around the point u = u” f M 

k=l 

where 

velocities YT (Vt ) smaller than (greater than) the shook speed U. 
For the jump to b e stable with respect to splitting, it is necessary 
that p + R+ = n - 1. 
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The system (1.1) will be called dissipative if for any arbitrary 
u” EM the following conditions hold: - 

1) In system (1.2) all particular solutions of the form 

vj (2, t) = sj&(w’--W (--<<km) 

are bounded for t > 0, for whatever non-negative numbers oi(j 
. . . . n). 

= m+ 1, 

2) If all the numbers oj(j = m + 1, . , . , n) are positive and finite, 
then these particular solutions tend to zero for t + m (except the solu- 
tion with k = 0, o= 0). 

In what follows, we shall consider the system (1.1) to be dissipative. 
Ihis implies, as is easily seen, that none of the roots O= oS (s = 1, 

2, l ... n) of the equation 

D (0, k) 2 det 1 i&j, - ikA j, (u’=) - qqjs (~2) 1 = 0 (1.3) 

lies in the lower half-plane; moreover, if all the coefficients uj(j = 

m+ 1, . . . . n) are positive and finite, then the real axis is free from 

these roots also. 

2. Shock waves. We shall be interested in those solutions of 
system (1.1) which are shock wsves moving with some constant velocity If 
without changes in their forms. ‘these solutions depend only on the vari- 
able [ = n - Ut, they satisfy the system of ordinary differential equa- 
tions 

- U ‘2 + $ Aj (u) = ~ij$j (u) (2.1) 

and they tend to some limits u+ E M and u- Eilf as z‘ + 00 . Furthermore, 
lim dui/dt = 0 as 4 + f m.For brevity we shall call these solutions 
transitional solutions. 

Evidently the vectors u- and u+are connected by the relations 

-Uuuj- + Aj (u-) = - Uuj+ + Aj (u+) (j = 1, . . ., rn) 

I& (u-) = I/+ (u+) = 0 (i=m$-l,...,n) 

These are the conditions which must be satisfied by the jump u+- u7 

bet us obtain a simple condition necessary for the existence of a 
transitional solution. For sufficiently large absolute values of 
&g < 01, system (2.1) may be linearized into 
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- u (Uj - Uj-) + E =ljs (U-) (a.5 - Us-) =’ 0 (i = 1, ., 1/l) (2.2) 

The linearized system has particular solutions of the form 

a(‘) - a- = awexp v,_ E 

where Y,’ (r = 1, 2, . . ., R - m) are the roots of 

DI (v, U) E det 
/ 

- mjs + 21 j, (UO) 

(- “js + .~js (“)) Y -- 3j~js (U’) 

the equation 

(2.3) 

-- 0, - U’ :=- u- (2.4) 

If Fk vr> 0, then the difference u( ‘) - u- tends to zero as [ -+ - 00 , 
Obviously the transitional solution u(t) in the domain considered may be 
represented as a linear combination thus: 

where the srnmnation is extended over all values of F for which Re uf> 0. 
In a similar way, in the domain of large positive 5‘ the function u([) 
may be represented thus: 

PC 
‘u - UC = 2 Cr+W)c!?ipv,+~ (2.G) 

P --I. 

where the summation is extended over all r with Be VT> 0. 

The solutions (2.5) and (2.6) obtained in this fashion may be extend- 
ed, at least in principle, to the point 5 = 0 with the aid of the exact 
equations (2.1). At this point, both solutions must have identical com- 
ponents. Moreover, one of the components, say ul, may be required to 
assume the prescribed value ~~(0) (~~(0) EZ (u; ~$1; this is permissible, 
because if there exists one transitional solution u({), (u(--00) = u-, 
u( +m) = u’), then there must exist an infinite set of such solutions, 

namely, U(I$ - a) (--00 < a < -). By choosing the parameter a we may re- 
quire ~~(0) to be any prescribed value in the interval (u1_ ~1’). 

Thus there are R + 1) conditions to be satisfied at 5 = 0: 

Ul (-0) = q(O) , u, (4) = a, (+o) (s == I, . . ., n) 

To satisfy these conditions we have at our disposal p+parameters C: 
and p-parameters Cr. If the number of these parameters (p++ p- ) is 
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less than the number of conditions (n + I), then a continuous transi- 
tional solution, generally speaking, cannot be constructed. If p++ p-> _ 
n + 1, then evidently 
tional solutions with 
existence of a unique 
must have 

- _ -. 
there exists an entire family of different transi- 
the same component u,(O). Therefore for the 
transitional solution (except for translation), we 

p-+p+==n+1 (2.7) 

Our aim is to establish the connection between these conditions and 
the n-+ n’= n - 1 conditions of stability relative to splitting (cf. 
footnote, p. 1559). To solve this purely algebraic problem, we shall 
utilize some specific properties of the dissipative systems. 

3. Ideal systems. Instead of the system (1.1) let us consider a 
sequence of auxiliary systems obtained in the following manner. We set 
some of the coefficients uj to zero and the remaining to infinity. We 
number the components u. such that u . = 0 for j = 1, 2, . . . , ml > m and 
o.=oo 

I 
for j = ml + 1, i.., n. Systei (1.1) assumes the form 

lhe number m1 (m < m1 Q n) may be called the rank of system (3.1). 
Evidently there exists one system of rank m or n, (n - RL) systems of 
rank m + 1 or n - 1, etc. 

Corresponding to the system (3.1), the dispersion equation (1.3) 
assumes the form 

A,, (io, iiz) 3 det 
iob,;,s - ikAjs (d) 

$8 fu”) = 
0 (3.2) 

We easily see that 

Thus the phase velocity V= C&Z corresponding to the system (3.1) 
satisfies the equation A 

“1 
(V) = 0 and does not depend on k. Moreover, it 

is always real; since, if it were not the case, as k varies, o would 
pass from the upper half-plane to the lower half-plane (or vice versa), 
and this is inconsistent with a dissipative system (1.1). A real phase 
velocity means that a plane wave of the form u = a exp [ i(wt - kx) 1 
will be undamped. Therefore, all systems of type (3.1) are ideal systems. 
If some of the dissipative coefficients are small and the remaining co- 
efficients very large, then to a high degree of accuracy we may replace 
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the original system (1.1) with the corresponding system (3.1). Thus the 
system (3.1) is of definite interest. 

Let us consider a system (0, which is obtained from the system (3.1) 
by replacing one of the equations $=(u) = 0 (a = ml + 1, . . . , n) with 
the equation 

We shall call this system of equations an adjacent system. 

The following theorem holds. 

Theorem (Whitham [5 I). ‘Ihe system (3.1) of rank m1 has exactly m1 

phase velocities V, G Vz Q . . . < V 
"1 

each velocity being counted the 

same number of times as the multiplicity of the root in the equation 
Aal = 0. The phase velocities V,‘( V,’ 6 . . . G Vml + 1’ of an arbi- 

trary adjacent system will alternate with the phase velocities of the 
system (3.1) thus: 

Vl’ < Vl < V3’ < v-2 < * . . < v,,, < V;$+g 

Proof. In system (1.1) we set 

%+;l = d tns-2 = . . . = cs,, - -0, 0 < G,,+l < ~-2, G,,+.z = . . . = Gn = h: 

Equation (1.3) thereby assumes the following form: 

ioSjs - ikA4 js (u’) 

which may be written as 

A m,+1 (k ik) - bn,,+lAm, (io, ik) = 0 

of, using (3.3), we may yet rewrite it as 

w (V) E Am,+l (V) 4 i + Am, (V) = 0 (3.4) 

Let us consider this dispersion relation for positive values of k. 
Since the system (1.1) is dissipative, all the roots V of Equation (3.4) 
lie in the upper half-plane or on the real axis. 

From this, according to the theorem of Hermite and Biler, we immedi- 
ately conclude the alternation of the phase velocities. Without citing 
the formulation of this theorem, we reproduce the essential steps of 
the proof. To begin with, we assume that the polynomials AnI, 1(v) and 
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AmI have no zeros in common; consequently, all the zeros of poly- 

nomial lo(V) have positive imaginary parts. When the point Y runs along 
the entire real axis from left to right, the point w describes some 
curve in the complex plane; this curve does not pass through the origin, 
and the argument of the point w increases monotonically. ‘Ihe point w 
alternately crosses the real and the imaginary axes. Therefore, the 
zeros of its real and imaginary parts alternate. This proof also remains 
valid when the functions A, + 1 and A have one or more coaznon zeros. 

1 ‘1 

From the alternation of the zeros of the polynomials Aml+ 1(V) and 

AmI( it follows that the orders of the two polynomials cannot differ 

by more than one. The order of the polynomial A,(v) is evidently equal 
to n while that of A n _ ; E tending thisnirizln;annot exceed n - 1 and thus must equal 

. x we see that the order of the polynomial 
Aal equals ml(ml = m, . . ., k). The theorem is thus proved. 

We make a further observation. Let al + I denote the coefficient of 

the highest term in polynomials w(V) and’h a1 + ,(V). lhe point w(V)/a,,+ 1 

moves in such a way that its argument increases with increasing V. As V 
tends to + DO, the argument of w(V)/asl + I tends to zero, and consequently, 

for sufficiently large V, it is negative. This shows that 

for sufficiently large V. From this it follows that the coefficient a 

of the highest term of the polynomial A 
"1 

“1 
(VI has a sign opposite to that 

of a Ill+ 1’ 

Considering this fact, and recalling the alternation of the phase 
velocities of the adjacent systems, we conclude that 

A,,,, V,‘) Am, (v,‘) < 0 (i = 1, . . ., ml + 1) 

A m,+l Vj> A’m, P’J > 0 (j = 1, . . ., ml) 
(3.5) 

4. Motion of the root Y of Equation (2.4). We shall clarify 
how the root Y of Equation (2.4) moves in the complex plane as the para- 
meter U moves along the real axis. 

From the definitions of the functions D(o, k) and Dl(v, u), the 
following relation results: 

D (ivU, - iv) E vm D1 (v, U) (4.1) 

If we assume that for any arbitrary U( -00 < U < OO) one of the roots Y 
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of Equation (2.4) is purely imaginary (V = ik, f O), then we conclude 
that the equation No, kO) = 0 possesses a real solution w= - k,U. 
Since this is impossible for a dissipative system, then as U moves along 
the real axis none of the roots v of Equation (2.4) may cross the imagi- 
nary axis at any point, except v = 0. 

We shall clarify for which values of U one of the roots may vanish. 
From the definition (2.4) of the function P,(v, U), it follows that 

.DI (U, U) SE A,,, (6) I[E (- oj) (4.2) 
(i :n> z-1 

Therefore, the point v = 0 is a root of the equation Dr(y, U) = 0 
when and only when U coincides with one of the phase velocities 

v1°\(v20 < . . . ,< F," 

of the system (CO) of the lowest rank m. 

(4.3) 

Let us consider in greater detail that root v(U) of Equation (2.4), 
which vanishes for U = Vao (a being one of the numbers 1, 2, . . . , ml. 

To begin with, we assume that V,” is not the phase velocity of at 
least one of the systems (C) of rank m+ 1, Then 17= Vao is a simple 
zero of the function As(U), and consequently 

On the other hand, it follows from the form of the function D,(v, U) 

that 

Here A,+l s (s = IR+ 1, . . . . n) are the determinants corresponding 

to all the poisible systems (C) of rank m+ 1. 

From the inequalities (3.5) it follows that none of the terms in the 
last sum may possess a sign opposite to that of A,‘(Vao). Since by our 
assumption these terms cannot all vanish, then the derivatives 

have the same sign. Thus Y’(V~*) < 0. It is possible to show that this 
derivation remains valid if Y,” is the phase velocity of all systems of 

rank nr+ 1. 

Therefore each time the parameter U (monotonically increasing) 
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crosses one of the phase velocities (4.3) of the system (CO), one of the 
zeros Y of the equation D1(v, v) = 0 crosses over from the right half- 
plane to the left half-plane along the real axis. 

It does not follow, however, that when the parameter V moves in an 
interval not containing any phase velocity Vao (a = 1, . , . , ml, then the 
number of roots Y of the equation Dl(v, u) = 0 remains constant in each 
half-plane. 

In fact, a root v(ll) may pass from one half-plane to the other 
through infinity without crossing the imaginary axis. 

Such a passage actually occurs each time the coefficient of the 
highest term in u in the polynomial Dl(v, u) vanishes. ‘Ibis coefficient, 
evidently, equals ( - 1)“: a(V). It vanishes when U = Vj*(j = 1, . . . , n), 
Vi* being the phase velocities of the systems (C) of rank n. 

Using reasoning similar to that above, one easily shows that each 
time the monotonically-increasing parameter II crosses one of the phase 
velocities Vj*(j = 1, . . . , n) of the systems (C*) of the highest rank, 
one of the zeros v of the equation Dl(u, I.0 = 0 crosses from the left 
half-plane to the right, tending to infinity when II= V.*. In this 
manner, the number of roots u(U) lying on one or the ot er side of the h 
imaginary axis changes only when the parameter tl crosses a phase velo- 
city of the system (Co) or (C*), i.e. system of the highest or lowest 
rank. 

Let us now fix the parameter Cl and vary the point u” EM, thus 
changing the phase velocities Vjo = Vjo (u”) (j = 1, . . . , m) and 
Vi* = Vi*(uo) (j = 1, . . ., n). If in this process none of the phase 
velocities intersects the quantity U, then the number l(U, u”) of roots 
v(U) in the left half-plane will not change. lbus, the number 

1 (--) = lim 1 (17, u”) 

asU+- a0 is the same for all u” E M. 

The three conclusions drawn at this point may be unified by the 
following formula: 

1 (U, u”) = 1 (-‘m) + 7z” (V, uO) - ?I * (V, 8) (4.4) 

where nO(U, u”) and n*(U, u”) are the number of phase velocities Vjo(uo) 
and V.*(u”), respectively, smaller than U. Using this relation, we may 
calcu i ate the sum p -+ p + (cf. Section 2) knowing only the relative 
positions of the points VP(u_), V~‘(U’), V.*(U-1, V-*(u+), and U on the 
real axis. In fact, it fo lows imnediately i from (4.4j that 
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p- + p’ = n + 6n” - 6n * (4.5) 

where 

8n” = no (U, u+) - no (U, n-), Sn* = n * (U, u+> - n * (CT, u-) 

5. Continuous profile of a shock wave and profile with a 
jump. We shall clarify how to determine from the relative positions of 

the phase velocities Vj" and Vi* and the shock speed II on the real line 

whether a transitional solution exists, whether it is unique (within 
translation), and whether it is continuous. 

Let us assume that some transitional solution u(x) exists. 

Let US first consider the simplest case, in which each of the differ- 
ences V.* - E 
all poiiAs - 

U (j = 1, . . . . n, Vjf(x) V .T U(X)] ) have the same sign at 
a,< z< =.Then6n*= 0, an a hy virtue of (4.5) the sta- 

bility condition of the jump (relative to splitting) 6n0 = 1 implies con- 

dition (2.7) p-+ p+= n + 1. ‘lherefore, in this case, to an evolution- 
ary wave there corresponds a unique continuous profile (within transla- 
tion), and to a non-evolutionary wave there corresponds either no transi- 
tional solution (&no < 1) or an infinite set of them (&no > 1). 

We now let some of the differences Vi*(x) - U change sign. Let x = a 
be the point, in the neighborhood of which one of the differences changes 

sign, decreasing monotonically. The point a cannot be a point of dis- 
continuity, since such a discontinuity would be non-evolutionary. Thus, 

the functions uj(x) (j = 1, . . . . n) are continuous at this point. 

It is possible to show that at the point x = a there either coincide 
at least two of the phase velocities of the system CC*), or that all of 
the derivatives du/dE are finite. In either case, at the point x = a 
besides the condition of continuity we must satisfy one further condi- 

tion: the condition of solvability of system (2.1) with respect to the 

derivative du/d[ ( remembering that the determinant of the system 
vanishes at x = a), or the condition of two phase velocities coinciding 
(assuming for simplicity that the phase velocities do not coincide 
identically), l’hus, the presence of p points of this type implies the 
existence of p additional conditions. 

Let us now consider the point x = b, in the neighborhood of which the 

difference Vi” - U changes sign, monotonically increasing. At this point 

an evolutionary discontinuity may exist. We observe that the location of 

the point x t b may vary within hnown limits. Therefore, the presence of 

q points of this type implies the existence of q additional free para- 
meters. Condition (2.7), valid in the absence of points of type a or b, 
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may be rewritten as 

p+ + p- + (I = n i- 1 + I-’ (5.1) 

Taking into account that &a* = q - p, we write the last relation uith 
the aid of (4.5) in the form 

6n” = 1 (5.2) 

Thus, the necessary condition for the existence of a unique shock 
wave corresponding to a given discontinuity will be the evolutionary con- 
dition (5.2). 

If, in addition, Sn* > 0, then the profile of the wave will contain 
discontinuities, the number of which will be not less than Sn*. 

In conclusion, we observe without proof that all the eigenvalues of 
the matrix 

a$j (u) In I II Q.------- , 
3 au, lL E M, o<o,<co, a=m+1,...,?2 

m-F1 

are positive if the system (1.1) is fully dissipative, 

The author is grateful to AI. Akhierer and R.V. Polovin for dis- 
cussions on some problems mentioned in this paper, and to L.I. Sedov for 
critical remarks. 
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